Rider's net moment estimation using control force of motion system for bicycle simulator
نویسندگان
چکیده
One of the challenging problems with bicycle simulators is to deal with the virtual bicycle dynamics that is coupled with rider’s motion. For the virtual bicycle dynamics calculation and the real time simulation, it is necessary to identify the control inputs from the rider as well as the virtual environments. The steering, pedaling, and braking torques can be easily measured by using torque sensors and the virtual environments can be generated and provided by a visual system. However, direct measurement of the rider’s net moment that significantly affects the bicycle motion is not practical. In this work, it is shown that six control forces of the Stewart platform-based motion system can be used for effective estimation of the rider’s net moment, incorporated with the sliding mode controller with perturbation estimation. © 2004 Wiley Periodicals, Inc. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
منابع مشابه
Vehicle Stabilization via a Self-Tuning Optimal Controller
Nowadays, using advanced vehicle control and safety systems in vehicles is growing rapidly. In this regard, in recent years new control systems, called VDC, have been introduced. These systems stabilize vehicle yaw motion, by yaw moment resulted from tire controlling forces. In this paper, an adaptive optimal controller applied to a vehicle to obtain a satisfactory lateral and yaw stability. To...
متن کاملRobust Hybrid Motion Force Control Algorithm for Robot Manipulators
In this paper we present a robust hybrid motion/force controller for rigid robot manipulators. The main contribution of this paper is that the proposed hybrid control system is able to accomplish motion objectives in free directions and force objectives in constrained directions under parametric uncertainty both in robot dynamics and stiffness constraint constant. Also, the given scheme is prov...
متن کاملKAIST Interactive Bicycle Simulator
This paper presents key technologies and system integration issues of the KAIST interactive bicycle simulator. The rider on the bicycle feels the motion and has the visual experience as if he/she is riding in the campus of the Korea Advanced Institute of Science and Technology. The simulator consists of a bicycle, a Stewart platform, a Magneto-Rheological handle and a pedal resistance system to...
متن کاملKAIST interactive bicycle racing simulator: the 2nd version with advanced features
This paper presents the KAIST interactive bicycle racing simulator system, which consists of a pair of bicycle simulators. The rider on the racing simulator experiences realistic sensations of motion, while being able to see the other bicycle simulator and having the audio-visual experience of riding in a velodrome or on the KAIST campus. The 2nd bicycle of the racing simulator system consists ...
متن کاملLoading Estimation of Flapping Wings under Aeroelastic Effect Using Finite Element Method
The aim of this paper is to provide an aeroelastic computational tool which determines the induced wing loads during flapping flight. For this purpose, a Finite Element (FE) code based on a four-node plate bending element formulation is developed to simulate the aeroelastic behavior of flapping wings in low incompressible flow. A quasi-steady aerodynamic model is incorporated into the aeroelast...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Field Robotics
دوره 21 شماره
صفحات -
تاریخ انتشار 2004